A study of laser-induced blue emission with nanosecond decay of silicon nanoparticles synthesized by a chemical etching method.

نویسندگان

  • Abdulaziz A Bagabas
  • Mohammed A Gondal
  • Mohammed A Dastageer
  • Abdulrahman A Al-Muhanna
  • Thaar H Alanazi
  • Moath A Ababtain
چکیده

Silicon nanoparticles (Si NPs), exhibiting a strong visible photoluminescence (PL), have found many applications in optoelectronics devices, biomedical tags and flash memories. Chemical etching is a well-known method for synthesizing orange-luminescent, hydride-capped silicon nanoparticles (H/Si NPs). However, a blueshift in emission wavelength occurs when reducing the particle size to exciton Bohr radius or less. In this paper, we attempted to synthesize and characterize H/Si NPs that emit lower wavelengths at room temperature. We proved that our method succeeded in synthesizing H/Si NPs with emission in the blue region. The wavelength-resolved and time-resolved studies of the PL were executed for H/Si NPs in methanol (MeOH), pyridine (py) and furan, using the 355 nm pulsed radiation from a Nd:YAG laser. In addition, excitation wavelength-dependent and PL studies were executed using the spectrofluorometer with a xenon (Xe) broad band light source. We noticed solvent-dependent PL spectra with sharp peaks near 420 nm and a short lifetime less than 100 ns. The morphology and particle size were investigated by high resolution transmission electron microscope (HRTEM). Particles as small as one nanometer were observed in MeOH and py suspensions while two-nanometer particles were observed in the furan suspension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

Investigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications

Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...

متن کامل

Optimization of Non-volatile Memory Cell and Energy Consumption in Robot Systems by Synthesized Silicon Nanoparticles via Electrical Discharge

In this paper, we propose to optimize manufacturing methods of memory cells by produced silicon nanoparticles via electrical spark discharge of silicon electrodes in water to reduce the energy consumption for low power applications. The pulsed spark discharge with the peak current of 60 A and a duration of a single discharge pulse of 60 µs was used in our experiment. The structure, morphology, ...

متن کامل

Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals.

We explore the dynamics of blue emission from dodecylamine and ammonia functionalized silicon nanocrystals (Si NCs) with average diameters of ∼3 and ∼6 nm using time-resolved photoluminescence (TRPL) spectroscopy. The Si NCs exhibit nanosecond PL decay dynamics that is independent of NC size and uniform across the emission spectrum. The TRPL measurements reveal complete quenching of core state ...

متن کامل

Comparison of the structural and chemical composition of two unique micro/nanostructures produced by femtosecond laser interactions on nickel

Articles you may be interested in Ultrashort laser pulse induced nanogratings in borosilicate glass Appl. Grain boundary diffusivity of Ni in Au thin films and the associated degradation in electrical contact resistance due to surface oxide film formation The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 20 35  شماره 

صفحات  -

تاریخ انتشار 2009